

### Critical Issues in Catalytic Diesel Reforming for Solid Oxide Fuel Cells

Di-Jia Liu , Michael Krumpelt, Haul-Te Chien & Shuh-Haw Sheen

ASM Materials Conference & Show Columbus, OH Oct. 18-21, 2004

#### Argonne National Laboratory



A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago





# The Critical Issues in Diesel Reforming Catalyst & Catalytic System Development

#### **Catalyst**

- Cost
  - Costly Rh usage
- Activity
  - ATR, POX or SR?
  - Efficiency & Selectivity
  - Fuel property & chemistry
- Durability
  - Metal vaporization & agglomeration
  - Support stability
  - Sulfur poisoning
  - Coke formation

#### <u>System</u>

- Fuel injection & mixing
- Reactor components
- System integration









### Examples of Diesel Hydrocarbon Components

| Compound Type                                       | Wt%<br>Analysis,<br>ANL | Wt%<br>Analysis,<br>Exxon | Ave. or<br>Ref.<br>Formula<br>(ANL) | Representative Molecular<br>Structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------|-------------------------|---------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paraffins                                           | 38.7                    | 39.7                      | $C_{16}H_{34}$                      | <b>^</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cycloparaffins                                      |                         |                           |                                     | <b>~~~~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1-ring cycloparaffins                               | 29.6                    | 23.6                      | $C_{10}H_{21}$                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2-ring cycloparaffins                               | 11.5                    | 20.6                      | $C_{16}H_{32}$                      | ~~~ \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3-ring cycloparaffins                               | 4                       | 6.5                       | $C_{22}H_{38}$                      | $\smile$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mono-aromatics                                      |                         |                           |                                     | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Alkyl benzenes (a)                                  | 7.3                     | 3.2                       | $C_8H_8$                            | $\bigcirc (a) \qquad \bigcirc (c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Naphthenebenzenes                                   | 3.2                     | 0.9                       | $C_{12}H_{16}$                      | <b>*</b> " " " " " " " " " " " " " " " " " " " |
| (Indans (b) + Tetralins (c) +<br>Indens (d))        |                         |                           |                                     | (b) (d) (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Di-aromatics                                        |                         |                           |                                     | (a) (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Alkylnaphthalenes (a)                               | 1.8                     | 1.6                       | $C_{13}H_{14}$                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Acenaphthenes                                       | 3.5                     | 2.2                       | $C_9H_{12}$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (b)/Biphenyls<br>Acephthalenes<br>(c)/Fluorenes (d) | 0.3                     | 1.7                       | $C_{13}H_{10}$                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





# Diesel Reforming Catalyst Development



#### Approach: Development of Perovskite Based Catalyst

#### The Perovskite Catalyst...

- Low cost material.
- Stable under high temperature & redox environment.
- Exchangeable A & B site for activity improvement & metal dispersion.



Conductivities of both e<sup>-</sup> and O<sup>2-</sup> of perovskite expand the catalytic active site through electron and oxygen vacancy transfers in a redox process.





## Diesel Catalyst Development: Test Apparatus & Conditions



**Diesel Reforming Catalyst Test Plant** 

#### Fuel

- Dodecane C<sub>12</sub>H<sub>26</sub>
- Dodecane/Dibenzothiophene (50 ppm S)
- Dodecane/1-Methylnapthlene (5%)
- Catalyst
  - Ru doped Chromite & Aluminite
  - Combustion method
- Microreactor
  - Temperature: 700 °C to 800 °C
  - Preheating: 200 °C
  - GC analysis for reformate products
- Reforming Input Mixture
  - ATR:  $O_2/C = 0.3 \sim 0.5$ ,  $H_2O/C = 1 \sim 3$
- Space Velocity
  - Fuel Flow Rate = 2.8x10<sup>-3</sup> gfuel/gCat•sec
  - GHSV = 50 K ~ 100 K hr<sup>-1</sup>





### Diesel Catalyst Development: Test Plant





# Diesel ATR Catalyst Development – H<sub>2</sub> Yield and COx Selectivity of Some Representative Samples

#### **Definition:**

 $\underline{H_2}$  <u>yield</u> =  $C_{H2}/C_{fuel}$ 

Reforming efficiency =  $\{C_{H2} \triangle Hc_{H2} + C_{CO} \triangle Hc_{CO}\} / C_{fuel} \triangle Hc_{fuel}$ 

**COx selectivity** =

 ${C_{CO2} + C_{CO}}/nC_{fuel}$ 

 $C_i$  = Molar flow of i,  $\triangle Hc_i$  = Heat of combustion of i, n = Number of C in fuel molecule



 $C_{12}H_{26} + 6O_2 + 12H_2O = 12CO_2 + 25H_2$ 





# Diesel ATR Catalyst Development – $H_2$ Yield as Function of $O_2/C$ and $H_2O/C$

The hydrogen yield as the function of  $O_2/C$  during the reforming over  $La_{0.8}Sr_{0.2}Cr_{0.95}Ru_{0.05}O_3$ ,  $H_2O/C = 1.0$ 



The hydrogen yield as the function of  $H_2O/C$  during the reforming over  $La_{0.8}Sr_{0.2}Cr_{0.95}Ru_{0.05}O_3$ ,  $O_2/C = 0.5$ 



Ru doped chromite and aluminite are also excellent steam reforming catalysts!





# Diesel ATR Catalyst Development – Optimize Activity through Synthesis & Characterization

- Forming highly dispersed active site through self-combustive powder formation method.
- Modification of redox behavior and lattice structure through A & B site substitution.
- Improve catalytic surface area and activity through calcination temperature.



Lattice Structure of a Single Cell in Perovskite





|          | N   | R (Å) | $\sigma^{2}$         |
|----------|-----|-------|----------------------|
| LCSR1200 | 6.0 | 1.943 | 2.5x10 <sup>-5</sup> |
| LCSR800  | 4.7 | 1.953 | 2.5x10 <sup>-5</sup> |
| LCR800   | 4.3 | 1.962 | 1.0x10 <sup>-5</sup> |





# Diesel ATR Catalyst Development – Optimize Activity through Synthesis & Characterization

Catalyst prepared at lower calcination temperature improved reforming lightoff threshold...



Study on ATR lightoff temperature for isobutane

Combined TPR and BET studies suggest the reduction of Ru at perovskite surface attribute to catalytic reaction.



| Sample          | LSCR- | LSCR- | <i>LCR-</i> |
|-----------------|-------|-------|-------------|
|                 | 1200  | 800   | 800         |
| BET Area (m³/g) | 3.10  | 18.3  | 21.6        |

- Ru imbedded near perovskite surface via lattice defects is the active site.
- Redox mechanism involves Ru<sup>+3</sup> to Ru<sup>0</sup> transition.





# Diesel ATR Catalyst Development – Investigation on Sulfur Catalytic Poisoning

Dibenzothiophene (DBT) and its derivatives are difficult to be removed from diesel through HDS process ...

Introducing 50 ppm sulfur in the form of DBT temporarily suppress reforming efficiency and COx selectivity.



Catalyst re-activates after S is removed from fuel.





# Diesel ATR Catalyst Development – Impact of Sulfur Tolerance at Higher Operating Temperature



Increase reaction temperature by 100 °C significantly improved catalytic performance in the presence of sulfur





## Diesel ATR Catalyst Development – 100 Hr Aging Test in the Presence of Sulfur



Excellent catalytic stability was observed during 100 hour aging test with S contaminated fuel





# Diesel ATR Catalyst Development – Investigation on Deactivation by Polyaromatics

- Challenges of PAH in Diesel Reforming
  - Low cetane number
  - Low ignition temperature
  - Cause for carbon formation
  - Difficult to reform



Long resident time and slow decomposition of PAH over active site reduce reaction rate!

 Impact on ATR reforming by 1methylnaphthalene (1MN)



- 1MN tentatively deactivates reforming reaction.
- Activity recoverable after 1MN removal.
- Performance improves with T increases.
- O<sub>2</sub>/C & H<sub>2</sub>O/C have limited impact.





### Diesel ATR Catalyst Development – Summary

- Ru doped chromites and aluminites demonstrate excellent catalytic reforming activities comparing with Rh based catalysts.
- Active catalysts are the perovskites containing Ru at B site with high oxygen vacancy and high surface area.
- The sulfur tolerance of the catalyst can be improved through higher operating temperature. Good catalytic stability was demonstrated in 100 hour aging test.
- Polyaromatics can temporarily deactivate catalytic activity thus needs to be addressed.





### **Diesel Fuel Mixing Study**





### The Challenges Facing Fuel Mixing

- Diesel fuel cannot be evaporated
- Incomplete mixing creates "hot spots" on the catalyst and leads to coke formation
- Pre-heating the air appears to prevent preignition







### Approach to Mixing Challenge

- Joint effort between ANL and International Truck and Engine Corporation (ITEC)
  - ITEC provides diesel-fuel injectors and fuel-injection control system
  - ANL will establish a test facility, develop a fuel/exhaust-gas mixing system, and conduct tests to evaluate the ANL autothermal reforming process.





### Fuel-air-steam Mixing Facility





### ITEC Diesel Fuel Injector







### Fuel Injection Test Chamber







#### Test Matrix

#### Test variables

- Exhaust-gas-fuel ratio (O/C: 0.4, Steam/C: 1.0)
- Exhaust-gas temperature (300 deg. C)
- Exhaust-gas water content (10%)
- Mixing configuration

#### Proposed measurements

- Flow rates (exhaust gas and fuel)
- Temperatures (fuel, exhaust-gas, and mixing region)
- Fuel mist characterization
- Carbon deposit
- Humidity
- Pressure





### Acknowledgements

- This work was supported by the U.S. Department of Energy,
   Office of Fossil Energy –Solid State Energy Conversion
   Alliance (Program Manager, Norman Holcombe) and Office of
   Energy Efficiency and Renewable Energy –FreedomCar&
   Vehicle Technologies (Program Manager, Sid Diamond).
- Thanks to the technical support by
  - CécileRossignol
  - Mike Schwartz
  - JameelShihadeh
  - - Martin Bettge
  - -Jeremy Kropf

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.



